Enumeration formulas for Young tableaux in a diagonal strip

نویسندگان

  • Yuliy Baryshnikov
  • Dan Romik
چکیده

We derive combinatorial identities, involving the Bernoulli and Euler numbers, for the numbers of standard Young tableaux of certain skew shapes. This generalizes the classical formulas of D. André on the number of up-down permutations. The analysis uses a transfer operator approach extending the method of Elkies, combined with an identity expressing the volume of a certain polytope in terms of a Schur function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enumeration of Standard Young Tableaux of certain Truncated Shapes

Unexpected product formulas for the number of standard Young tableaux of certain truncated shapes are found and proved. These include shifted staircase shapes minus a square in the NE corner, rectangular shapes minus a square in the NE corner, and some variations.

متن کامل

The Selberg integral and Young books ( Extended Abstract )

The Selberg integral is an important integral first evaluated by Selberg in 1944. Stanley found a combinatorial interpretation of the Selberg integral in terms of permutations. In this paper, new combinatorial objects “Young books” are introduced and shown to have a connection with the Selberg integral. This connection gives an enumeration formula for Young books. It is shown that special cases...

متن کامل

Hook Formulas for Skew Shapes

The celebrated hook-length formula gives a product formula for the number of standard Young tableaux of a straight shape. In 2014, Naruse announced a more general formula for the number of standard Young tableaux of skew shapes as a positive sum over excited diagrams of products of hook-lengths. We give an algebraic and a combinatorial proof of Naruse’s formula, by using factorial Schur functio...

متن کامل

Schur Q-polynomials, multiple hypergeometric series and enumeration of marked shifted tableaux

Abstract. We study Schur Q-polynomials evaluated on a geometric progression, or equivalently q-enumeration of marked shifted tableaux, seeking explicit formulas that remain regular at q = 1. We obtain several such expressions as multiple basic hypergeometric series, and as determinants and pfaffians of q-ultraspherical polynomials. As special cases, we obtain simple closed formulas for staircas...

متن کامل

Diagonal Vectors of Shifted Young Tableaux

X iv :0 80 3. 22 53 v2 [ m at h. C O ] 4 F eb 2 00 9 DIAGONAL VECTORS OF SHIFTED YOUNG TABLEAUX DORIAN CROITORU Abstra t. We study ve tors formed by entries on the diagonal of standard Young tableaux of shifted shapes. Su h ve tors are in bije tion with integer latti e points of ertain integral polytopes, whi h are Minkowski sums of simpli es. We also des ribe verti es of these polytopes, and o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008